Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review
نویسندگان
چکیده
Small-diameter blood vessels (SDBVs) are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of extracellular matrix (ECM) of native blood vessel and promote the adhesion, proliferation, and growth of cells. In this review, we summarize the polymers that are deployed for the fabrication of SDBVs and classify them into three categories, synthetic polymers, natural polymers, and hybrid polymers. Furthermore, the biomechanical properties and the biological activities of the electrospun SBVs including anti-thrombogenic ability and cell response are discussed. Polymer blends seem to be a strategic way to fabricate SDBVs because it combines both suitable biomechanical properties coming from synthetic polymers and favorable sites to cell attachment coming from natural polymers.
منابع مشابه
Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation.
Electrospun grafts have been widely investigated for vascular graft replacement due to their ease and compatibility with many natural and synthetic polymers. Here, the effect of the processing parameters on the scaffold's architecture and subsequent reactions of partially heparinized blood triggered by contacting these topographies were studied. Degrapol® (DP) and poly(lactic-co-glycolic acid) ...
متن کاملElectrospun Bilayered Vascular Scaffolds for Engineering Small Diameter Blood Vessels
336 ©2013 Society For Biomaterials
متن کاملELECTROSPINNING OF NANOCOMPOSITE FIBRILLAR TUBULAR AND FLAT SCAFFOLDS WITH CONTROLLED FIBRE ORIENTATION A.A.Salifu, B.D.Nury and C.Lekakou Centre of Materials, Surfaces and Structural Systems
Electrospinning was used in innovative electrospinning rigs to obtain tubular and flat fibrous structures with controlled fibre orientation with the aim to be used as scaffolds for biomedical applications, more specifically in the tissue engineering of vascular and orthopaedic grafts. Gelatine and hydroxyapatite (HA)-gelatine solutions of various compositions were tried and electrospinning of c...
متن کاملElectrospinning of photocrosslinked and degradable fibrous scaffolds.
Electrospun fibrous scaffolds are being developed for the engineering of numerous tissues. Advantages of electrospun scaffolds include the similarity in fiber diameter to elements of the native extracellular matrix and the ability to align fibers within the scaffold to control and direct cellular interactions and matrix deposition. To further expand the range of properties available in fibrous ...
متن کاملSilk-based electrospun tubular scaffolds for tissue-engineered vascular grafts.
Electrospinning was used to fabricate non-woven nanofibrous tubular scaffolds from Bombyx mori silk fibroin using an all aqueous process. Cell studies and mechanical characterization tests were performed on the electrospun silk tubes to assess the viability of their usage in bioengineering small-diameter vascular grafts. Human endothelial cells and smooth muscle cells were successfully cultured...
متن کامل